Zeros of Bessel function derivatives

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“BEST POSSIBLE” UPPER AND LOWER BOUNDS FOR THE ZEROS OF THE BESSEL FUNCTION Jν(x)

Let jν,k denote the k-th positive zero of the Bessel function Jν(x). In this paper, we prove that for ν > 0 and k = 1, 2, 3, . . . , ν − ak 21/3 ν < jν,k < ν − ak 21/3 ν + 3 20 ak 21/3 ν1/3 . These bounds coincide with the first few terms of the well-known asymptotic expansion jν,k ∼ ν − ak 21/3 ν + 3 20 ak 21/3 ν1/3 + · · · as ν →∞, k being fixed, where ak is the k-th negative zero of the Airy...

متن کامل

On the Localization and Computation of Zeros of Bessel Functions

The topological degree of a continuous mapping is implemented for the calculation of the total number of the simple real zeros within any interval of the Bessel functions of first and second kind and their derivatives. A new algorithm, based on this implementation, is given for the localization and isolation of these zeros. Furthermore, a second algorithm is presented for their computation empl...

متن کامل

Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros

Bounds for the distance |cν,s− cν±1,s′ | between adjacent zeros of cylinder functions are given; s and s′ are such that @cν,s′′ ∈ ]cν,s, cν±1,s′ [; cν,k stands for the kth positive zero of the cylinder (Bessel) function Cν(x) = cosαJν(x)− sinαYν(x), α ∈ [0, π[, ν ∈ R. These bounds, together with the application of modified (global) Newton methods based on the monotonic functions fν(x) = x2ν−1Cν...

متن کامل

Lower Bounds for the Zeros of Bessel Functions

Let jp „ denote the nth positive zero of J , p > 0. Then / ■■> 7\'/2 Jp.n > Oln + P) ■ We begin by considering the eigenvalue problem (1) -(•*/)' + x~y = X2x2p-Xy, X,p>0, (2) y(a) =y(\) = 0, 0 < a < 1. For simplicity of notation we will set q = p~x. It is easily verified that the general solution of (1) is y(x) = CxJq(Xqxx/q) + C2Yq(Xqxx'q) and that the eigenvalues are given by Jq(Xq)Yq(Xqax/q)...

متن کامل

Quadrature formulae using zeros of Bessel functions as nodes

A gaussian type quadrature formula, where the nodes are the zeros of Bessel functions of the first kind of order α (<(α) > −1), was recently proved for entire functions of exponential type. Here we relax the restriction on α as well as on the function. Some applications are also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2017

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/13725